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SUMMARY

The problem of determining Knudsen flow flux distributions in certain models
pertinent to electric rocket thrustor design is discussed. A basic model of cir-
cular cross section 1s established in which particles are assumed to enter one
end through a small orifice and leave the other end, which is wholly open.

Analyses are given for the cases of diffuse and specular reflectlions from
the walls., TFor diffuse reflection, the resulting integral equations are solved
by an iterstive procedure on an IBM 7094 computer. TFlux distributions are pre-
sented for the rear wall, the side wall, and the open end of the basic model.
For the case of specular reflection, approximate solutions are obtalned by a
method of ray tracing. The specular-reflection analysis is extended to complex
models that closely approximate five variastions of an electron-bombardment ion
thrustor. Flux distributions for these models are found to be relatively insen-
sitive to changes in propellant-distributor geometry.

INTRODUCTION

The subJect of rarefied gas dynamics is receiving greater attention in re-
cent years, largely because of the intense interest in exploration of outer
space. In the study of electric propulsion, for example, a knowledge of the ar-
rival rate per unit area, or flux distribution, of rarefied gases is of value in
predicting thrustor performance. In general, a limited number of solutions to
flux-distribution problems is available in the literature. Solutions are
largely dependent on the assumed mode of surface reflection and on the geometry
of the model under consideration.

The study of free-molecule flow, or Knudsen flow, in tubes of right-circular
cross sectlon has perhaps received the most attention and dates back to the early
work of Knudsen and Clausing., More recently several others have investigated
this problem. Solutions to the "infinite tube" problem are available in most
texts on kinetic theory (e.g., ref. 1). Solutions of efflux patterns from short
tubes are presented in reference 2. In reference 3, perhaps the most comprehen-
sive work of recent date on the Knudsen flow problem, the tube flow problem,
among many others, is discussed. Other investigators have studied special varia-
tions of the tube flow problem. For example, in reference 4, the problem of de-
termining the pumping speed of a circular aperture in a diaphragm across an in-



finite tube 1s studled. Recently, solutions for molecular-flow flux distribu-
tions in right-circular tubes (ref. 5) and in tapered tubes (ref. 6) have been
presented.

Particle behavior in the free-molecule flow regime 1s of interest in the
field of electric propulsion because, frequently, propellant-mass flow rates in
electric rocket thrustors are such that particle densities are very low. Deter-
mining the flux distributions of interest, however, is seldom & straightforward
matter. An electrostatic lon thrustor that exemplifies the problem is shown in
figure 1. Detalls of its operation and performance were first reported in refer-
ence 7 and will be mentioned here briefly for orientation purposes only. Neutral
propellant vapor passes from the vaporizer, through an orifice, and into the ion
chamber. The propellant is lonized and a plasma is formed. By virtue of a po-
tential difference maintained between the screen and the accelerator grid, ions
are extracted, accelerated, and exhausted.

The purpose of this report is to determine the neutral-particle flux distri-
butions of certailn axlisymmetric models that arise in connection with this ion-
thrustor configuration. Two analyses are made of a model consisting of a right-
circular cylinder in which particles enter at one end through a small orifice on
the axls and leave the downstream end, which is wholly open. The difference be-
tween the two analyses stems from the mode of surface reflection assumed: dif-
fuse or specular. Solutions of flux distributions are obtained on an IBM 7094
computer. Because of its relative simplicity, the specular-reflection analysis
is extended to models that are representative of the ion-thrustor configuration

discussed.

MODEL AND ASSUMPTIONS

The basic model from which the two analyses are developed is shown in

sketch (a).
. W I /_\

~—Side wall

\-Open end

(a)

Particles enter the right-circular, cylindrical enclosure through a small,
thin.orifice located on the axis at the rear wall. The source of the entering
particles is considered to be a large chamber in which the gas is in equilibrium.
The entering particle flux is assumed uniform across the orifice opening. The
pressure downstream of the open end is assumed zero except for that contribution
that arises from the leaving particles. 1In one analysis, reflections from the
walls are assumed diffuse; in the other, specular. In both analyses, the enter-
ing flux from the orifice is assumed to follow the cosine law distribution and
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the particle arrival rate at the walls is assumed equal to the leaving rate. The
particle mean free path 1s assumed sufficiently large to ensure free-molecule
flow everywhere within the model.

Full conslderation of the exact nature of the surface-reflection process is
beyond the scope of this report. Reference 8 suggests that the occurrence of
specular reflection (wherein the angle of reflection of a particle leaving a sur-
face equals the angle of incidence) is unlikely. Reference 9, however, points
out that specular reflection may be of practical importance in very high speed
flows. It is generally agreed among experts that diffuse reflection (wherein the
direction of reflection of a particle from the surface is unrelated to the direc-
tion of incidence) is the more probable mode.

ANALYSES AND PROCEDURES
Fundamental Relations

The analyses to be dlscussed are based on fundamentel relations developed
from elementary kinetic theory.

The rate of particle flow from a differential area dS; 1in a direction 64
arriving at an area de is

- - dw
d(nij) = n4vy COS Qi G_Si 'M—J (1)

where vy 1s the isotroplc mean particle speed, ns; the particle density, and
i i

cos 95 dS
a J 45

J 2 (2)
(A1l symbols are defined in appendix A.) The subscript notation is described in
sketch (Db).

(b)



The arrival rate, or flux, at de from dS; 1is, from equations (1) and

(2),

d—(nj_ :) ds
. J 1. - 1
d(nj) =-—a§3—— =7 nyvy cos ei cos ej KZEJ (3)

With hy = (1/4)n;7;, equation (3) can also be written as

. ny dss
d(nj) = — cos B; cos Gj ;ET
1J

(4)

From equation (4), the flux through a differential area d4S, of a hemisphere of
radius 1y, from a small orifice centrally located on the base, can be written as

. Ay ny
d(nh) = ——= cos 6y = —= cos 64 (5)
ﬁlh ﬂlh

In equation (5), the cos 6, =1, and the orifice area A; 1is considered small

enough to be almost a point source, that is, Ay << ﬂlﬁ.

Equation (4) is the basic relation from which the subsequent analyses are
developed. It will be used as written for the diffuse-reflection analysis and as
rewritten in the form of equation (5) for the specular-reflection analysis.

Diffuse-Reflection Analysis

In formulating the problem described herein, a set of two simultaneocus in-
tegral equations arises from considering the contributions from all sources to
the local arrivel rate (assumed equal to the leaving rate) on each surface.

The equations that describe these local fluxes are given next in general
form and are derived in detail in appendix B. Model surfaces and pertinent var-
igbles are identified in figure 2. The local flux on the rear wall hy(r,) in-
cludes contributions from all local points on the side wall and can be expressed
as

L
ny(ry) = / ha(x)F(x,1,)dx (6)
0
(rear (side wall)
wall)

On the side wall the local flux h3(x3) includes contributions from the orifice,
the rear wall, and the side wall itself:



R L
ha(xz) = hyG(xz) + / hy(r)E(r,x5)dr + f ha(x)I(x, xz)dx (7)
d,/2 0

(side (ori- (rear wall) . (side wall)
wall) fice)

The local flux in the plane of the open end hz(sz) includes contributions from
the orifice, the rear wall, and the side wall:

R L
ha(sg) = hyJ(sg) + / fy(r)K(r, sp)ar + / ha(x)M(x, sp)dx (8)
/2 0
(open (ori- (rear wall) (side wall)
end) fice)

In these equations, the functions F, G, H, I, J, K, and M are the kernel
functions of the model geometry (see appendix B). The side wall is the wall of
the cylinder. The flux entering through the orifice, hl, i1s assumed known, that
is, a constant.

Equations (B8) and (7) must be satisfied in order to obtain a solution to
equation (8). The basic difficulty encountered in seeking solutions to equa-
tions (6) and (7) stems from the fact that the functions hz(x) and hy(r) ~ the

flux distributions along the side and vear walls, respectively - are unknown.
Thus, direct integration is not possible,

Described in reference 10 is a numerical method of solution to the problem
of determining the thermal-radiation characteristics of cylindrical cavities.
The simultaneous integral equations for the apparent emissivity distribution that
are given in reference 10 are similar in structure to equations (6) and (7). The
procedure followed herein to obtain solutions to equations (6) and (7) employs
techniques similar to those used 1n reference 10. Solutions are obtained by
iterative numerical integration performed on the IBM 7094 computer of the NASA
Lewls Research Center.

Diffuse~Reflection Procedure

For actual computation, equations (6) and (7) are first normalized by divid-
ing through by hl, the flux through the orifice. To start the iterative method

of solution, an initial guess 1s made of the flux distribution h3(x) in equa-
tion (6). The significance of the value chosen for the initial guess of hz(x)

will be discussed later in this section. The function nu(r,) is then calculated
by supplying values of 1Ty, dl/z < rg £ R Yo the integrand function, for in-
stance f(x,ry) = hz(x)F(x,ry), and then by numerically integrating f£(x,ry) by
Simpson's rule to obtain pointwise vslues.

To obtain values of hz(xz) from equation (7), a similar procedure is fol-



lowed using the values of hy(r) produced from equation (6) and the initial guess
of hz(x). Values of xz, O < xz <L are supplied in G, H, and I of equation
(7). The function G 1is prescribed: the integrand of the first integral be-
comes a function, for instance, h(r,xs); and the integrand of the second integral
becomes a function, for example, 1(x,xz). The functions h(r,xz) and i(x,xz)
are numerically integrated, added to G(xz), and values of hz(xz) are thus ob-
tained. The newly tabulated hz(x) function is then used as the "next guess” in

equation (6) and the cycle is repeated until convergence is obtained, that is,
until the values of hz(x) obtained from equation (7) agree with the values of

hz(x) supplied previously in equation (6).

With the flux distributions, hz(x) along the side wall and #f,(r) along the
rear wall, determined, the values of the local flux distribution, hz(sz), across
the open end can then be determined by numerical integration of equation (8). No

iteration is required in this case; however, the integration must be done once
for each value of the radius, sg.

For the iterative integration of equations (6) and (7), the r and x in-
crements used were as follows: on the rear wall, 1/42 of the cylinder radius;
on the side wall, 1/40 of a unit length; and, on the open end, 1/40 of the cylin-
der radius. The increment used on the rear wall was chosen because the Simpson's
rule integration requires an even number of increments. In the first integral of
equation (7), the r integration is carried out from dl/E to R. With

d1/2R = 1/21, 40 increments were available. The second integral of equation (7)
was broken into either two or three parts, depending on whether the xz point
being calculated was numbered odd or even. When xz was an odd-numbered point,
an even number of increments was available to the left and right of Xz and
Simpson's rule integration was applicable. When xz Wwas an even-numbered point,

Simpson's rule integration was applied over the range from x =0 to the x
step value preceding the xz point, and from the x value after the point out

to x = L. Over the interval between, trapezoidal integration was applied.

Because of the complex structure of equations (6) and (7), trial solutions
were investigated in an attempt to establish convergence criteria and overall ac-
curacy of the results.

To determine the effect of the initial guess of the hz(x) function that

must be supplied in equation (6) to start the iterative procedure, several dif-
ferent functions were lnvestigated. Functions that had positive slopes, negative
slopes, and even a value of zero, were tried. In all cases, convergence to the
same final answers was indicated. No stability problems were encountered; how-
ever, the rate of convergence depended on the particular initial guess selected.
The number of iterstions required for the flnal solutions was reduced to low
values (as indicated in table I) by noting that the constant-slope portion of the
side-wall relative-distribution curves could be approximated by an initisl guess

of ng(x)/ny =~ 0.001{[(L/R) + 1] - (x/R)].
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The "ratio test" indicated in table I constitutes a check on the numerical
results from the law of mass conservation. This check ratio is derived from a
comparison of the flow in through the orifice and the flow out through the open
end plus the small fractlon returning back through the orifice. Because of the
area ratios, this latter fraction would be expected to be small. Expressed
mathematically, the comparison is

dq/2 R
a-\2
. . . 1
21 hy(r)r dr + 2x ho(s)s ds = ny | == (9)
0 0
or, in terms of relative flux distributions,
2 o " i) 2
ny(r no(s a.
4. r dr + 2 s ds = 2[—= (10)
ny by 2\ 2
0 0

For exact agreement, a ratio of the left side to the right side of equation (10)
should equal unity. To make the desired comparison 1t is necessary to calculate
the "return-flux" distribution across the orifice opening from equation (8) and
then perform the integration indicated in equation (10). A trial calculation for
a length to radlius ratio (L/R) of 5 gave a return~-flux ratio of 0.0046 and an
open end ratio of 0.9713, which is a total of 0.9759. Although numerical inte-
gration that involved several integrals was required to obtain this ratio, the
result seems very good. Other trial solutions showed that this degree of agree-
ment was not possible with coarser increments, while the use of finer increments
resulted in 1little or no improvement and added greatly to machine computation
time. BSince the return-flux ratio was negligible by comparison and calculation
also required additional computer time, it was neglected in obtaining the final
solutions.

As a result of the preliminary evaluations discussed, a convergence crite-
rion was established for the final runs and consisted of the following two
checks:

(1) After 20 iteratlions of equatlons (6) and (7), equation (8) was solved.
The flux distribution was then integrated as in equation (10), and a ratio of the
left side to the right side was formed. If the ratio obtained was greater than
an arbitrarily selected value - either 0.96 or 0.97 was used - then the iterative
procedure was stopped and the results were listed. It was necessary to decrease
the value of the comparison ratlio as the length to radius ratio increased because
of inherent inaccuracies of the numerical integration.

(2) If the ratio obtained in item (1) was less than the preassigned value,
an additional 20 iterations were performed on equatlons (6) and (7) and a new
ratio comparison was made. If the condition of item (1) was satisfied, the re-
sults were listed. If not, the ratio obtained was compared with the ratio of the
previous 20 iterations. If the change in the ratios compared was not greater
than 0.0001, iteration was stopped, and the results were listed. Otherwilse an-



other 20 ilterations were accomplished and new comparisons were made.

As a precaution to prevent endless iteration 1f the ratioc test failed, the
program was to be stopped after 100 iterations and the results listed. In the
final solutions that employed the initial guess given previously, this precaution
was not needed.

Specular-Reflection Analysis

An approximate method of solution of the specular-reflection problem was
developed that 1s readily adaptable to numerical techniques.

If equation (5) is multiplied through by d4Sy, where, from sketch (ec),
as, = 12 sin 6y d9; dy, the result is

n
a(my,) =~ﬁ—i cos 64 sin 64 d6; Ao (11)

Zh sin Gi

— - X-axis

In equation (11), da(my,) is the arrival rate (particles per unit time) on

the differential element of the hemisphere. The arrival rate passing through a
differential band is

'51 axn
d(my,) =_;r—/ cos 64 sin 64 d6y a9
0

ny 2 cos 6y sin 6y doy

Ty sin 26y 463 (12)



For the analysis, it is assumed that the particles initiglly leaving the
orifice in a direction near and gbout 6; are restricted always to follow the

direction traced by the "ray" associated with 6;. The arrival rate (particles

per unit time) on an arbitrarily narrow band on the hemisphere (sketch (c)) is
then written from equation (12) as

AI—Tb ~ Ei sin 261 A@i (13)

To find the flux (particles per unit area per unit time) through an annulus,
such as shown in sketch (d), it i1s necessary to sum the arrival-rate contribu-

Side wall —,

Rear wall-\\ Ar
r
\ | Axis
- - - i
Orifice — /)—Typlcal annulus, p
/

>Typical @-rays

JatC)

(a)

tions from all rays passing through the annulus and to divide by the area of the
annulus, that is,

P

ny Ap (14)
Substituting equation (13) into equation (14) and noting that
Ay = n:[(r + Ar)2 - r2] yield
ny A9 }J: sin 204
. i
Ap ™ "¢ A(zr + A7) (15)

The summation 1 +through J includes all rays passing through the annulus.

An alternate approach to the specular-reflection problem was suggested by



F1i Reshotko of Lewis and 1s given in appendix C. Although the method yields

an analytic expression for the flux distribution across the open end of the basic
model, it 1s not readily extended to handle more complex models. Agreement of
results between the two methods for the basic model, however, indicates that the
method used herein can reasonably be extended to more complex geometries.

Specular-Reflection Procedure

The flux calculation which is largely & matter of bookkeeping, was accom-
plished using the IBM 7094 computer. For the model shown in figure 2, a mesh was
overlayed. The mesh size used in the r-direction prescribed the values for the
denominator of equation (15) for each annulus. The value of A9 1s prescribed
by dividing the rays that emerge from the orifice and range in value from zero to
nt/2 into an arbitrary number of rays such that the first ray is A8/2, the next
is [(08/2) + £0], the next is [(A9/2) + 2 A9], and so on.

The procedure is begun by following the first ray throughout its entire path
and noting the r-count location at each x~count and storing thils information.
The next ray is then followed and its path recorded in a similsr manner. When a
ray arrives at the side wall it is reflected, the angle of reflection belng set
equal to the angle of incidence. In the same manner, the rays, which are actu-
ally representative of cones, are reflected from the axis. Thus, it is possible
to accomplish the entire calculation by following rays in the r,x plane. TFor ex-
ample, the r-count position of the initial ray at any x-count position (see
sketch (e)) is given by r = x tan 65.

\ 4R
~Initial ray
r = x tan 64
{2R
—Second reflection
r = X tan 64 -2ZR
R
4 _
3 /
r-count > /1 \ AN
1L/ '/ N
o “TT g T T ——»-x-count Axis
/
ZThird reflection
s r = 4R - x tan 64
<First reflection
r = 2R -x tan Gi

(e)
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These position values are recorded as the x-count 1s increased in steps un-
til the value r =R 1s reached. The equation of the first reflection is
r = 2R - x tan 94, and the procedure of storing r~count locations of 64, as the
x-count is increased, 1s continued until the value of r =0 is reached. The
ray is reflected from the axis, the equation of the second reflection belng
r = x tan 64 - 2R. The equation of the third reflection is r = 4R - x tan 04,

and so on. With each reflection from the wall xr = R, the sign of the x tan 63
component alternates from positive to negative, and the R component increases

by 2R. With each reflection from the axis, the sign alone alternates. In this
manner, the rays ei*j passing through a given r-count location are recorded,

and after completing the tracing of all rays, equation (15) may be applied at the
x-planes of interest.

Flux distributions on the side wall can be obtained in a similar manner by
counting and storing ray information in x-count locations at r = R and then
dividing by the incremental cylinder surface area 2xR Ax.

Because of questions previously discussed concerning the plausibility of the
specular reflection process as well as recognition of the approximation of the
method, the discussion on the accuracy of the method is confined to the details
of the calculation itself. The assumption that rays initiate on the axis at the
plane of the rear wall obviously excludes application of the method to problems
other than those in which the orifice diameter is very small compared with the
cylinder diameter.

The accuracy of the calculation is strongly dependent on the size of the A9
increment and somewhat less dependent on the size of the Ar increment. The in-
tegral over 6 1in equation (12) is equal to unity and the summstion over 6
given in equation (15) approximates this integral. For example, if R were di-
vided into 10 increments, while at the same time the A9 increment was selected
to be 45° (two rays), there would be several locations through which no ray would
pass. Also, if only two rays were used (A9 = 459, 97 = 22.5°, 65 = 67.50), the

sumation over 6 would equal 1.112. Therefore, to include all locations and
to obtain a good approximation of the integral, it is desirable to choose A9

as small as is practical. Optimization of the A9 increment and Ar increment
was investigated. It was found that a Ar increment of from 20 to 25 units of
R, used in conjunction with a A9 increment of 0.125° (i.e., 720 rays), gave
good results - measured in terms of the degree of '"smoothness" of the distribu-
tion curves. With this choice of A9, the summation over 6 equals unity to
five significant figures. A A9 increment of 0.0125° (i.e., 7200 rays) was in-
vestigated and was found to have little effect on the results.

It is apparent from inspection of both the diffuse- and specular-reflection
equations that flux distributions are dependent only on the cylinder length to
radius ratio. All results to be presented have thus been normeslized by the cyl-
inder radius, R.
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RESULTS AND DISCUSSION
Diffuse Reflection

Values of the relative flux distribution along the rear wall, the side wall,
and the open end of the model shown in flgure 2 were obtained for cylinder length
to radius ratios of 1, 2, 3, 4, 5, and 10. The orifice to cylinder radius ratio
in all cases was 1/21. Results are plotted in figures 3 to 5, and some tabulated
values are given in tables I and IT. These values are given to three significant
figures, although machine computation gave eight.

Turning first to the results shown in the figures, it is seen from figure 3
that the distributions on the rear wall for various L/R are similar in form and
differ primarily in magnitude. The flux-distribution curves across the open end
(fig. 4) approach the shape of the infinite-tube-distribution curve (ref. 1) as
the L/R increases. In making this comparison, the infinite tube distribution
from reference 1 has been normslized to the L/R = 10 value on the axis. The
distributions in figure 4 are quite similar for length to radius ratios greater
than two. Inspection of the distributions of figure 4 indicates that, as would
be expected, the total relative arrival rates at the open end are nearly equal
to unity for all L/R solutions (see table I).

The flux-distribution curves along the side wall, given in figure 5, are all
similar, each exhibiting an initial increase followed by a uniform decrease as
x/R increases, As mentioned in the Diffuse-Reflection Procedure section, it was
found that the constant-slope portion of these curves beyond the peak is closely

approximated by the relation hz(x)/hy = 0.001{[(L/R) + 1] - (x/R)}.

Because of the steep slope of the curves at the intersections of surfaces,
end-point values of the curves of figures 3 to 5 are not shown in the figures but
are given in table II. Values at the intersections of surfaces, for example,
fi (R) and hz(0) are different. The mathematical reason for these differences

cannot be rigorously explained from equations (6) and (7) but is somewhat appar-
ent 1f the equations are compared, for example, for values of r, =R and

xz =0, respectively. At this point, the equations become similar in form, but

each contains & different kernel function. In reference 10, 1t was found that
similar differences in corner values occurred in solutions to the problem of ap-
parent emissivity of a cylindrical cavity. The opinion expressed in reference 10
1s that the findlng seems physlcally reasonable, based on the idea that an ob-
server approaching the corner along the side wall would have a different view
from that of an observer approaching the corner along the rear wall. A similar
ides msy apply to the problem herein.

Extending the diffuse-reflection analysis to models such as that represented
by the electron-bombardment thrustor shown in figure 1, wherein a distributor and
screen grid are included, poses a formidable problem. The governing integral
equations may be readily written; however, instead of two equations, three or
more arise (some of which contain integrals having variasble limits of Iintegra-
tion) that must be simultaneously satisfied. While solution by the lterative
method is possible in principle, it may be much more difficuit to accomplish
practically because of the additional number of unknown distribution functions
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involved. The iterative procedure can no longer be initiated with a guess of
only one unknown distribution function.

Specular Reflection

Values of the relative flux distribution across the open end of the basic
model of figure 2 are given in figure 6(a). These results may be compared with
the results for diffuse reflection given in figure 4. Both sets of curves show
maximums in the center (axis) and minimums near the wall; however, the portion
of the curves between have opposite curvatures. The shape of the "specular"
curves was nearly the same for all cases investigated. In this model, particles
proceed in the forward direction only, so that the flux distribution on the rear
wall 1s zero.

Values of the open-end distribution determined from the approximate method
(eq. (15)) are compared with those of the analytic method (eq. (C5)) in figure
6(b) for an L/R of 5. In determining values from equation (C5), 100 terms were
used (i.e., a = 100). It can be seen from figure 6(b) that the results from the
approximate method compare quite well with the analytic results. Values for an
L/R of 1 determined from equation (C5) were practically identical with those
determined from equation (15). As mentioned earlier, the analytic method 1s use-
ful for comparative purposes but cannot be easily extended to more complex
models,

A side-wall distribution for an L/R of 4 is shown in figure 7 and compared
with the diffuse-~reflection distribution. The variation of the specular-
reflection curve with x/R is typical of those obtained with other L/R values.

This method of analysis was also applied to models representative of the
electron-bombardment thrustor shown in figure 1. JTon-chamber pressures in this
thrustor have been estimated to be of the order of 10~% millimeter of mercury.
The thrustor uses mercury vapor as a propellant. The mean free path of the mer-
cury atom at this level of pressure with thermal equilibrium assumed 1s approxi-
mately 25 centimeters compared with chamber dimensions of about 10 centimeters.
Tt is likely, therefore, that molecular flow occurs in the chamber. Thermal en-
viromment and the lonization processes, however, could have an appreciable effect
on the flow.

Various propellant "distributors" have been tested in this thrustor in an
effort to alter neutral propellant distribution and improve thrustor performance.
Five models that approximate several of these configurations, along with a sketch
of the mesh structure used for calculations, are shown in figure 8. The radial
flux distribution was of primary interest in these studles so that a coarse x-
count mesh was used. In addition to the distributor, a "screen-grid" was located
across the downstream end of the models. To preserve axial symmetry, the screen-
grid was approximated as a series of concentric annuli. The reflection and re~
reflection of rays was accomplished as previously discussed. Re-reflected rays
are those that strike a downstream surface and return in a negative x-direction.
Because of these rays, two modifications to the computer program were required to
prevent the computer from continuously looping. In the first modification, rsys
that returned to the "orifice" by re-reflection were deleted. In the other modi-
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fication, rays that became "trapped" by re-reflection were deleted after 200 re-
reflections in the region between the rear wall and the distribubtor and after

10 re-reflections in the reglon between the distributor and the screen. These
limiting values were selected after considerasble investigation of trial solutions
run to much higher limits. Both of these "deletion" procedures masy be Justified
to the extent that, under steady-state conditions, the particles, represented by
the rays, must eventually find their way out of the chamber, otherwise, chamber
pressures would become infinite. The number of deletions resulting from these
modifications was actually a small percent of the total number of 720 rays fol-
lowed. In the worst case, model E, 40 rays (5.6 percent of the total) were de-
leted., Of these, only four were deleted in the region between the distributor
and the screen. This region is of particular interest because the ionization
process in the real thrustor takes place therein. The welghted value of the de-
leted rays, however, must be considered to evaluate the effect of these deletions
properly. A summation across the screen openings shows that, in the worst case
(model E), a total weighted value of less than 4 percent was being deleted.

Flux distributions at four axial stations for the five models studied are
plotted in figure 9. Shown in figure 10 are the average flux distributions (two
values per opening) through the screen apertures. The curves of figure 9 have
the seme general form as those of figure 6(a), indicating that the flux distri-
butions are relatively insensitive to distributor geometry. In this respect, the
specular-reflection results are in agreement with thrustor test results reported
in reference 1l. Therein, only slight differences in performance were noted in
comparing test results from configurations similar to models D and E. As can be
seen from figure 8, these two models represent opposite concepts of propellant

introduction.

CONCLUDING REMARKS

The purpose of this report was to determine particle flux patterns that
arise in connection with Knudsen flow in certain geometric configurations of in-
terest in the field of electrostatic propulsion. A basic model of circular cross
section was established in which particles were assumed to enter one end through
a small orifice and leave the other end, whilch was wholly open. Two modes of
surface reflection were studied: diffuse and specular. Numerical means were
used to obtain solutions. The specular-reflection analysis was extended toc more
complex models that included a distributor and a screen. These models closely
approxlmated variations of a Lewis Research Center electron-bombardment ion
thrustor. Althrough the diffuse-reflection analysis could in principle be ex-
tended to these models, the additional integral equations that arise make prac-
tical solution of the problem extremely difficult.

It was found that, with diffuse reflection, the shape of the flux-
distribution curve across the open end of the model approached that of the dis-
tribution curve for an infinite tube as the tube length to radius ratio in-
creased. For the model studied, the relative flux distribution along the side
wall was found to be linear in part and fltted a rule-of-thumb relstion. Differ-
ences in flux values at surface intersections were found and were postulated to
be due to differing "view factors."
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Flux-distribution curves for both the specular~ and diffuse-reflection anal-
yses showed maximum values on the axis and minimum values at the wall: between,
the distribution curves had opposite curvatures. Increasing the length of the
model as well as inclusion of distribubtors with various openings had little ef-
fect on the specular-reflection flux distributions. This insensitivity to dis-
tributor geometry has also been noted in measured performance of electron-
bombardment thrustors. Since diffuse reflectlon is generally agreed to be more
likely than specular reflection, it must follow that flux distributions obtained
from the diffuse-reflection analysis should be closer to the actual case.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 24, 1963
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APPENDIX A

SYMBOLS
A area, surface
d dlameter of orifice
F function in eq. (6), defined in appendix B
f distance, variable, used in derivations in appendix B
G function in eq. (7), defined in appendix B
g distance, variable, used in derivations in appendix B

HI functions in eq. (7), defined in appendix B

J,K functions in eq. (8), defined in appendix B

T length of model

1 length, variable

M function in eq. (8), defined in appendix B

m distance, variable, used in derivations in appendix B
N normal to surface

n density, particles per unit volume

n flow rate, particles per unit time

n flux, particles per unit time per unit ares

R radius of model

r radigl distance, varisble

S area, differential

s radial distance, varieble, plane of open end of model
v mean particle speed, dlstance per unit time

X dlstance, varisble

o number, 1,2,3, . . ., ®

B angle, variable, used 1n derivations in appendix B

16




6 angle, variable, between N and

) angle, variable

w solid angle
Subscripts:

b band on hemisphere
h hemisphere

i number

P plane, normal to x-axis
1 orifice

z open end

3 side wall

4 rear wall

7, measured from N

17



APPENDIX B

DERIVATION OF INTEGRAL EQUATTONS USED IN
DIFFUSE-REFLECTION ANATYSIS

Equations (8) to (8) are estaeblished by considering the contributions to
the local flux on a surface from all possible sources and then by integrating
over the contributing surfaces (i.e., by application of eq. (4)). Subscript num-
bering in the following derivations and sketches is consistent wlth that on the

model shown in figure 2.

I. Equation (6) derivation.

The contribution to the local flux on the rear wall at a point ry from a
local point on the side wall (see sketch (f)) is

. nz dS3
dh,(r,) = — €08 §,5 COS O, ;E— (B1)
3

(£)

The following relations are established from sketech (f):

X
d85 =R dBf dx. COS 943 = 7"4—3

R~ ry cos B

2

2 2
f=143"x

cos O =
34 143

Using these relations in equation (Bl) yields

18



M

) nz
d_n4_(r4) = _J‘—t—<7,

R - r, cos B\
X 4 R dp dx

(B2)
43) ( Lz ) 42 '

Also, from the law of cosines,

2 2 2 2 2 2
_ R™ + Ty - £ _ R® + T, f x° - 245
08 B = —pmp, " = 2Rr,
from which
2 _ g2 2 2 _
143 = R® + Tyt X ZRr4 cos B

The Iintegral over all of the side wall yields the total local flux at a point on
the rear wall:

R - r, cos B

hy(r,) =2 b (x)Rx = ag ax  (B3)

CRZ + ri + xz - ZRr4 cos B)

(¢} 0

The flux distribution on the side wall is independent of B, and the B integra-
tion can be performed (ref. 12) to obtain equation (6):

L
hy(ry) = f hz(x)F(x,ry)dx (8)
0

where

x3 + (R? -VrZ)x

| 3/
[x"" + 2(8% + r2)x? + (82 - ri)]

A condition on the B integration given is that

) = 2R? (B4)

F(x,r4=

2
(Rz + rz + xz) > (-2Rr4)z
This condition 1s everywhere satisfled except at the point x = O, ry = R.

II. Equation (7) derivation.

The contributions to the local flux on the side wall st a point Xz come

19



from three sources: +the orifice, the rear wall, and the side wall itself. The
equation will be developed by considering each of these in order, with notation
as shown in the sketches.

A. The contribution from the orifice, considered as & point source,

(see sketch (g)) is

. By 851
ldns(x:_?)) = -Tf— CcOs 951 cos 913 '22_ (B5)
13

established from sketch (g):

The following relations are

T .2 X3
dS, == d cos B = e
1
.4{ﬂ toet 57 13
cos B = ._R... 7,2 = RZ + XZ
31 7 34z 13 = 3

Using these relstions in equation (B5) yields the total contribution from
the orifice

where
2
x3R dl

4(R2 + x%)z =7

G(xz) =

B. The contribution from & local point on the rear wall (see sketch
(h)) 1is

20



h as,

4di13(x5) =?4 cos 954 cos 945 - (BS)
143
Projection view
(h)
The following relations are established from sketch (h):
X3z
dSy = r 4dp dr cose43=-i;—3
_R-rcos B 2 _ 42 2
cos 654 --———-———Z43 g = 7,43 - Xz
Using these relations in equation (B8) yilelds
N R - r cos B)(X3 \r a8 ar
dh,(xz) =—-—( (B9)
4
3\ %3 7 143 Lyz/ 123

Also, from the law of cosines,

r2 + RZ -~ g2 r2+7R2+X%— 225

cos B =""7%® =TT R

from which

2 _ .2 2 z _
145—1' + R +x5 2rR cos B

The integral over the rear wall ylelds that contribution to the total flux
at & local point xz on the side wall:

R
. ~ R -1 cos B 10)
ho(xg) =2 b, () x5 z O Or (
4 '3 T(/ 4 / (I.Z + RZ + xs - 2rR cos B)
d1/2
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The B integration can be performed via reference 12 to yield

R
4h3(x3) = f h4(r)H(r,x5)dr
dl/z

where

(Rz + x%)r - rd

H(r,xz) = 2Rxz » 572
[r4 + 2(}% - R?')r2 + (Rz + xg) :|

A condition on the B integration in this case is that

(x2 + B2 + x%)z > (-2Rr)?

The condition is satisfied everywhere except at the point Xz

0, r

(B11)

(B12)

R.

C. The contribution from a local point (identified as point 5 in sketch

(i)) on the side wall itself (see sketch (i)) is

. ng d35
Sdns(XS) == cos Oz5 cos Ogz ;E—
53

Projection view

(1)

The followlng relations are established from sketch (i):

5

T

(B13)



yields

R +
d85 =R dB dx cos fzg = cos Ogz = 7 o
53
2 2 2
h=7’55-(X3"X) m =~-R cos B
Using these relations in equation (B13), and noting that n5(x) = nz(x),
. 3 R2(1 - cos B)2 R 4B dx
sdhz(xz) = — ( > B) g (B14)
53 53

From the law of cosines

RZ + R® - n@
oRR

cos B =

from which

he = 2R2(l - cos B) = ng - (x3 - x)2

or

2

=

= ZRZ(l - cos B) + (x5 - x)2

The integral over the side wall yields that contribution to the total local
flux at a point xz on the side wall:

L 7

2

shz(xz) =§ nz()R® f  ———— (1 - cos ) 5 ap ax (B15)

[(x3 - x)2 + 2R2(1 - cos B)]
0 0

After some manipulation, the B 1integration can be performed via refer-
ence 12 to yield

L
shz(xz) = / hz(x)I(x, xz)dx (B16)
0
where
2 2
1 (xz - x)° + 6R

[(xs - x)2 + 4R2]3/2
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and where the magnitude sign preserves the positive sense assoclated with
the leg of the triangle in sketch (i) and permits the contribution over the
entire surface of the side wall to be written under one integral. A condi-
tion on the B integration in this case is that

[(x3 - x)% + 232]2 > (—ZRZ)Z

This condition is satisfled everywhere except at the point Xz = X. At this

point, the latter half of the term in brackets in equation (B17) becomes
zero. Note, however, that this portion of the bracketed term is always pos-
itive and approaches zero as x approaches xz. Finally, combining equa-

tions (B6), (Bll), and (B16) yields equation (7):

R L
hz(xz) = hyG(xz) + / hy(r)H(r, xz)dr + / hz(x)I(x, x5)dx (7)
/2 0

ITI. Equation (8) derivation.

The derivation of equation (8) follows the identical procedure given in the
two previous derivations. That 1s, contributions to the local flux at a point
s5 1n the plane of the open end are each determined and then integrated to give
the total contribution. In this case the contributing sources are: the orifice,
the rear wall, and the side wall., These contributions, when set up in integral
form, become

1.’1(s)~n]_ Ld -2_
A- 2 L2+s s

h,(4)r f T — dp dr
r + sg+ L —IZI'S2 cos B)

/ R - s; cos B

2
+ = nz(x)R(L - x) " > dB ax (B18)
R + s + (L-x)° - 2Rs, cos B]
After the B integration, equation (B18) becomes
R T
ho(sy) = hlJ(sz) + / ny(r)K(r, sp)dr + / hz(x)M(x, 5o )dx (8)
d;/2 0

where
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2
Ldl
2 2
L~ + Sz

rd + (L2 + sz)r

JI(s

il L

z)=

K(r,s,) = 2L ]5/2

[r + 2(1? - sz)r + (28 + &B)

(L - ;;)3 + (8% - s%)(L - x)

2
M(x, sz) = 2R 573

[(L - x)%+ Z(R2 + sz)(L - %)% + (R2 - s%)]
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APPENDIX C

DERIVATION OF ANALYTIC EXPRESSION FOR SPECULAR-REFLECTION ANATYSIS

In equation (12), an expression for the arrival rate passing through a dif-
ferentlal band on a hemispherg 1s given as

d(ﬁb) ='512 cos 6y sin 6; a6, (c1)

Consider an annulus located at radius s 1in a plane transverse to the axis
of the basic model, as shown in sketch (j).

T~
7~ 3 N -
R /// % % ]
- s
' = _f\//, I
Orifice~ 6
1
— —0s

(3)

Similar to the method given in the text, particles leaving the orifice in s
direction 63 are represented by a ray in the two-dimensional plane. Obviously,

an Infinlte number of rays can pass through the annulus shown in sketch (j). The
flux through the annulus 1is given by the summation of arrival rates of all these

rays, dlvided by the area of the annulus:

n ::;i:
no(sy) = E;E%ZET 2 cos 6; sin 6,(46;) (c2)
i=1

To establish the series given in equation (C2), consider the three possible
paths that rays may take to arrive at the annulus. These are shown typically in

sketech (J).

For the first ray 64,

L s

cos 6 = — e —————may
1 s
Vs + 172 g2 + 12
26




2o (As)cos 61 (As)L
" SZ + LZ s + L

The next ray 65 first strikes the side wall and is reflected through the
annulus. For this ray, ‘ .

L R 2R - s
cos 92 = sin 92 =
ViR - 5)% + 18 Vier - s)2 + 12
(AS.)COS 92 (AS)L

L8q

=;/(2R ~ )%+ 12 " (2R - s)2 + 12

The third ray, 6z, first strikes the side wall and is reflected to the axis.
It then re-reflects from the axlis and passes through the annulus. For this ray,

L R 2R + s
coSs 93 = sin 93 =
VR + 5)2 + 12 V(R + 5)2 + 12
V(As)cps Oz _ (As)L

MO, =
3 + 2+L2
\/(ZR + s)2 + 12 (2R + s)

Equation (C2) can thus be written as

ny(s) 1 fs(As)LZ (2R - s)(As)L? . _(2R+ s5)(As)I?

= + +
T 2 2 2 :
gl “S(As)ksz + L2) [(ZR - )2+ Lz] [(ZR + 8)2 + LZ]
(C3)
Equation (C3) reduces to
Z(S)=_IE . 2R + s N 2R - s
n ns 2 2
1 [(20R + )2 + 1Z] [(2ar - )2 + 12]
(C4)

— R 2
Normalized with respect to R and with =ng = nl(ﬂ/4)(dl/2) , equation (C4)
may be written to express the relative flux ratio:
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S ® 2
ng(s) g dlz(%)z 2o+ 3 2a - £
oy =Z<?> '1% s\? L22+ o2 Lzz}
a (e 8) + ] (69 (ﬁ.)]/
(Cs)

Inspection of equation (C5) shows that the term by term contributlons are
of the order of l/oas, so that only a few terms are needed for accurate solution.

28



10.

11.

1z.

REFERENCES

Present, R. D.: Xinetlic Theory of Gases. McGraw~H11l1l Book Co., Inc., 1958.
(Ch. 1-4.)

Degyton, B. B.: Gas Flow Patterns at Entrance snd Exits of Cylindrical Tubes.
Consolidsted Electrodynamics Corp., Sept. 13, 1956.

Demarcus, W, C.: The Problem of Knudsen Flow. Rep. K-1302, Pts. I-VI, AEC,
1956-1957.

Bureau, A. J., Laslett, L. Jackson, and Keller, J, M,: The Pumping Speed of
a Circular Aperture in & Diaphragm Across g Circular Tube, Rev. Sci,
Instr., vol. 23, no. 12, Dec. 1952, pp. 6£83-686.

Sparrow, E. M., Jonsson, V. K., and Lundgren, T. 8.: Free-Molecule Tube
Flow and Adisbatic Wall Temperatures. Jour. Heat Transfer (Trans. ASME),
ser. C, vol. 85, no. 2, Msy 1983, pp. 111~118.

Sparrow, E. M., and Jonsson, V. K.: TFree-Molecule Flow and Convective-
Radiative Energy Transport in a Tapered Tube or Conical Nozzle. ATAA
Jour., vol. 1, no. 5, May 1963, pp. 1081-1087.

Kaufmen, Harold R.: An Ton Rocket with an Electron-Bombardment Ion Source.
NASA TN D-585, 1961.

Toomre, Alar: Gas Dynamics of Free Molecule Flow. TN 58~787, Office Sei.
Res., Mar. 1938.

Bird, G. A.: The Distribution of Reflected Molecules from Typical Bodies in
Rarefied Gas Flow. Tech. Note HSA 56, Weapons Res. Establishment, (Aus-
tralia), Jan. 1960.

Sparrow, E. M., Albers, L. U,, and Eckert, E. R. G.: Thermal Radiation
Characteristics of Cylindrical Enclosures. Jour. Heat Transfer (Trans.
ASME), ser. C, vol. 84, no. 1, Feb. 1962, pp. 73-8l.

Kaufman, H. R., and Reader, P. D.: Experimental Performance of an Ion Rocket
Employing an Electron Bombardment Ion Source. Preprint 1374-60, Am. Rocket
Soc., Inc., 1960.

Dwight, Herbert Bristol: Tables of Integrals and Other Mathematical Data.

Fourth ed., The Macmillan Co., 1961, pp. 105-106.

29



TABIE T.

- VALUES OF RATIO TEST

" AND NUMBER OF ITERATIONS

OF EQUATIONS (6) AND (7)

Iength to | Ratio® | Number of
radius iterations
ratio,

L/R
1 0.-992 20
2 . 987 20
3 . 981 20
4 .977 80
5 . 971 60
10 . 968 20
&The ratio is defined as fol-
lows: .
R
/ [ﬁz(s)/ﬁl]s ds
Ratio = 0

TABIFE II.

1/z(d.l/2)2

-~ END-POINT VALUES OF RELATIVE FLUX DISTRIBUTION

CURVES OF FIGURES 3 to 5 FOR DIFFUSE-REFLECTION

ANATYSTS OF MODEL SHOWN IN FIGURE 2

Length to Rear wall,
radius ny(r)/hy
ratio, (fig. 3)

L/R .
Radial, r/R

d4,/2R o
1 0.0689x10~2 |0.029x102

2 .178 .076
3 .276 .123
4 371 .168
5 . 461 .213
10 . 902 . 429

30

8Corresponding points.
bCorresponding points.

Side wall,
hz(x)/hy
(fig. 5)
Position
Axial, x/R
0? (L/R)P
0.043x10~2 |0. 114x10-2
.098 .108
.148 .107
.197 .102
.242 .101
. 462 .098

Open end,
hz(S)/nl
(fig. 4)

Redial, s/R

1P 0
0.108x10~2 0. 333x10~-2
.131 . 254
.135 .249
.136 . 248
.136 .246
.128 .244




C-57341

Accelerator
Filament

Screen grid

— Magnetic field
windings

Figure 1. - Electfon-bomba.rdmen‘b ion thrustor.

y
X

Distributor =—.

Vaporizer = —
Mercury vapor—
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1 Orifice

2 Open end
3 8Side wall
4 Rear wall

Figure 2. - Basic model for diffuse- and specular-reflection analyses.
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Figure 3., - Relative flux distribution along rear

wall of model shown in figure 2 for various

length to radius ratios.
analysis. Radius of orifi

Diffuse-reflection
ce, 0.0476 units.
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Relative flux, ho(s)/hy
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Figure 4. - Relative flux distribution along
open end of model shown in figure Z for

variocus length to radius ratios.

Diffuse-

reflection analysis. Radius of orifice,

0.0476 units.
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Figure 5. -~ Relative flux distribution along side wall of
model shown in figure 2 for various length to radius

ratios. Diffuse-reflection analysis.
0.0476 units.

Radius of orifice,
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Relative flux, ho(s)/hy
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—
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(a) Various length to radius ratios.
Compare with figure 4.

Figure 6. = Relative flux distribution along
open end of model shown in figure 2.
Specular-reflection analysis.
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(b) Comparison of approximate and analytic
results for a length to radius ratio
of 5.

Figure 6. - Concluded. Relative flux distribu-
tion along open end of model shown in fig-
ure 2, Specular-reflection analysis.
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Relative flux, hs(x)/f;

. 005 e

.004« \\\

. 003 \\\\\
.002 \\\\\\

001 _—+~—__ |Specular | |

0 1 2 3 4
Normalized axial distance, x/R

Figure 7. - Comparison of relative flux distribu-
tion along side wall of model shown in figure 2.
Length to radius ratio, 4. Diffuse- and spec-
ular-reflection analysis.



Model A

Model B
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=—0.,10
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Model C

Figure 8. - Section views of ion-thrustor models
and mesh overlay for specular reflection anal-
ysis. Length, 4; radius, 1. Normalized units.
Nine equally spaced concentric screen openings,
0.08 units each.
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Figure 8. - Concluded.

analysis.

x-increment 0.4 units;
r-increment 0.04 units

Section views of ion-thrustor
models and mesh overlay for specular reflection

Length, 4; radius, 1. Normalized units.

Nine equally spaced concentric screen openings, 0.08

units each.
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Relative flux, f(r)/hy
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Relative flux, A(r)/fy
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Figure 9. - Concluded. Specular reflection relative radial

flux distributions at various normalized distances from
orifice for models shown in figure 8.
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Figure 10. - Average relative radial flux distribution
through screen openings. Models from figure 8.
Specular reflection.
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